APPLIED MATHEMATICS - Code No.241 SAMPLE QUESTION PAPER CLASS - XII (2025 - 26)

Maximum Marks: 80 Time: 3 hours

General Instructions:

Read the following instructions very carefully and strictly follow them:

- 1. This Question paper contains 38 questions. All questions are compulsory.
- 2. This Question paper is divided into five Sections A, B, C, D and E.
- 3. In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and Questions no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
- 4. In Section B, Questions no. 21 to 25 are Very Short Answer (VSA)-type questions, carrying 2 marks each.
- 5. In Section C, Questions no. 26 to 31 are Short Answer (SA)-type questions, carrying 3 marks each.
- 6. In Section D, Questions no. 32 to 35 are Long Answer (LA)-type questions, carrying 5 marks each.
- 7. In Section E, Questions no. 36 to 38 are case study-based questions carrying 4 marks each.
- 8. There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and one sub-part each in 2 questions of Section E.
- 9. Use of calculators is not allowed.

This s	SECTION – A This section comprises of 18 multiple choice questions and two assertion and reason type questions of 1 mark each.				
Q.No.		Quest	tion		Marks
1.	In what ratio must a g per kg so that by sellir			₹ 60 per kg and ₹ 65 gain is 10%?	1
	(A) 3:2 (B)	2:3 (C)	2 : 5 (D)	3:5	
2.	In a 100m race, A car the same race, B can	J	0 m and can giv	e C a start of 28 m. In	1
	(A) 10 m (B)	20 m (C) 1	8 m (D)	8 m	
3.	If $x = a t^2$ and $y = 2$	2at, then at $t = 2$ then	he value of $\frac{d^2y}{dx^2}$ is	is	1
	(A) $-\frac{1}{16a}$ (B)	$-\frac{1}{16}$ (C)	$\frac{1}{8a}$ ([(-1)	

^{*}Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

Page **1** of **9**

	Trend	Pattern of variation	Time period of variation	
	Component			
	I. Secular trend	a. is a regular periodic variability	i. over a period more than a year	
	II. cyclical trend	b. has smooth, regular variations	ii. within a period of one year	
	III. seasonal trend	c. has oscillatory variation	iii. over a long-term period	
		iii; III – c – i (B) I – b i; III – a – iii (D) I – b		
5.		e same	se the interest rate decreases	1
ò.	the following inequal	$p \le 19$, $2 < m < 6$ and k, p, m lity is always valid?) $\frac{k-p}{m} \le 4$ (C) $\frac{k-p}{m} < 2$	-	1
7.		The only correct statements $A' = -I$ (C) $ A = 0$		1
B.				1
0.		$\int \frac{4x+6}{2x^2+6x+5} dx + \frac{1}{2} \int \frac{dx}{2x^2+6x+5} $ the		1
	(A) $\frac{1}{3}$ (B	3) $\frac{1}{2}$ (C) $\frac{1}{4}$	(D) $\frac{1}{6}$	
9.	(A) increases then (B) decreases then	orem states that if the sample sampling distribution must app the sample distribution must a	proach normal distribution	1

^{*}Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

Page 2 of 9

10.	Two groups of students from different schools are tested for their average mathematics scores. Group 1 has 12 students, and Group 2 has 10 students. What is the degree of freedom for this independent two-sample t-test?	1
	(A) 20 (B) 21 (C) 19 (D) 22	
11.	If $P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is adjoint of a 3 x 3 matrix A and $ A = 4$, then α is equal to	1
	(A) 4 (B) 8 (C) 11 (D) 256	
12.	The order of the differential equation $\frac{d}{dx} \left[\left(\frac{dy}{dx} \right)^3 \right] = 0$ is	1
	(A) 2 (B) 1 (C) 5 (D) 3	
13.	At what rate of interest will the present value of a perpetuity of ₹ 500 payable at the end of each quarter be ₹ 40000?	1
	(A) 1.25 % p.a (B) 2.5 % p.a. (C) 5 % p.a. (D) 6 % p.a	
14.	If A and B are two square matrices such that $B = -A^{-1}BA$, then $(A + B)^2$ is equal to	1
	(A) 0 (B) $A^2 + B^2$ (C) $A^2 + B^2 + 2AB$ (D) $A^2 + B^2 - 2AB$	
15.	In solving the LPP: Minimize $Z=6x+10y$ subject to constraints $x\geq 6,\ y\geq 2,\ 2x+y\geq 10,\ x\geq 0,\ y\geq 0$ the redundant constraints are	1
	(A) $x \ge 6, y \ge 2$ (B) $y \ge 2$ (C) $x \ge 6$ (D) $2x + y \ge 10, x \ge 0, y \ge 0$	
16.	A fair coin is tossed 6 times. Let X be the number of heads obtained.	1
	If $P(X = k) = P(X = k + 2)$, then the value of k is	
	(A) 4 (B) 3 (C) 2 (D) 1	
17.	A and B are square matrices of order 3. The determinants of A and B are 5 and 4 respectively, then the determinant of the matrix $4A^2$ B is	1
	(A) 64 (B) 400 (C) 1600 (D) 6400	
18.	Using flat rate method, the EMI to repay a loan of $\stackrel{?}{=}$ 20000 in $2\frac{1}{2}$ years at an interest rate of 8 % p.a. is	1
	(A) ₹ 700 (B) ₹ 800 (C) ₹ 90 (D) ₹ 100	

^{*}Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

Page 3 of 9

	Questions number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R).	
	Select the correct answer from the options (A), (B), (C) and (D) as given below:	
	 (A) Both Assertion (A) and Reason (R) are true and (R) is the correct explanation of Assertion (A). (B) Both Assertion (A) and Reason (R) are true but (R) is not the correct explanation of Assertion (A). (C) Assertion (A) is true but Reason (R) is false. (D) Assertion (A) is false but Reason (R) is true. 	
19.	Assertion (A): Let A be a 2 x 2 matrix, then $adj (adj A) = A$ Reason (R): $ adj A = A $	1
20.	Assertion (A): If a random variable X follows a binomial distribution with parameters n and p, then the mean of X is always less than its variance.	1
	Reason (R): Probability of an event lies between 0 and 1 (0 and 1 included).	
This	SECTION – B section comprises of 5 very short answer (VSA) type questions of 2 marks e	ach.
21(A).	Find the last digit of ($2^{100} + 100!$)	2
	OR	
21(B).	Without finding the values of the square roots, prove that the inequality $\sqrt{5} + \sqrt{3} > \sqrt{6} + \sqrt{2}$ holds true.	
22.	A random variable X has the following probability distribution: $P(X=x) = \begin{cases} a & x, & \text{if } x=1,2,3 \\ b, & \text{if } x=4 \end{cases}$ where a and b are constants. If it is given that the mean of the distribution is 2.8, then find the values of a and b .	2
23.	The population of a town increases from 75,000 to 1,25,000 over a period of time. If the compound annual growth rate is 5%, calculate the number of complete years it will take for the population to grow from 75,000 to 1,25,000. [Use $\log(1.67) = 0.223$ and $\log(1.05) = 0.021$]	2
24(A).	A small town experiences an average of 2 power outages per month. Assuming the number of power outages follows a Poisson distribution, find the probability	2
	that in a given month, there will be exactly 3 power outages, given that there will be at least one power outage (Use $e^{-2}=0.14$). OR	

Page 4 of 9 *Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

www.studentbro.in

24(B).	A certain type of electronic component fails at a rate of 2 failures per 1000 hours	
∠-r(<i>∪)</i> .	of operation. Assuming the failures follow a Poisson distribution, find the probability that in a 5000-hour operation, there will be more than 1 failure. (Use $e^{-10}=4.54\times 10^{-5}$)	
25.	The value $V(t)$ of a machine at time t , in years, follows a linear depreciation model, where the initial value of the machine is $\ref{25,000}$ and it depreciates by $\ref{25,000}$ each year. At what time will the value of the machine be half of its initial value? Find the value of the machine after 6 years.	2
TI	SECTION – C nis section comprises of 6 short answer (SA) type questions of 3 marks each	۱.
26.	A boat running upstream takes 8 hours 48 minutes to cover a certain distance, while it takes 4 hours to cover the same distance running downstream. What is the ratio between the speed of the boat and speed of the water current?	3
27(A).	A curve given by $y=px^3+qx^2$, where p and q are constants, has one of its critical points at $(1,-1)$. Find the values of p and q . Also find the other critical point.	3
	OR	
27(B).	The total revenue function for a commodity is $R=15x+\frac{x^2}{3}-\frac{x^4}{36}$. Show that the point at which average revenue is maximum, the average revenue and marginal revenue has the same value.	
28(A).	A bond having a face or maturity value of ₹ 56,000, redeemable at par in 6 years carries a coupon rate of 7% p.a., to be paid quarterly. Find the purchase price of the bond if effective yield rate is to be 9% p.a., compounded quarterly. [Use $(1.0225)^{-24} = 0.58$]	3
	OR	
28(B).	A company purchases a machine for ₹ 50,000. The machine is expected to be used for 8 years, and its scrap value at the end of this period is estimated to be ₹ 6,000. A sinking fund is set up for replacing the machine with a new one after 8 years, which is expected to cost 30% more than the current machine. The sinking fund earns 6% interest per annum, compounded annually. Calculate the yearly payment required to be put in the sinking fund. [Use $(1.06)^8 = 1.6$]	
29.	Pipes A, B and C can fill a tank in 30, 60 and 120 minutes respectively. Pipes B and C are kept open for 10 minutes, and then Pipe B is shut while Pipe A is opened. Pipe C is closed 10 minutes before the tank overflows. How long does it take to fill the tank?	3

^{*}Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

Page **5** of **9**

30.	Hole punching machine is set to punch a hole 1.84 cm in diameter in a strip of sheet metal in a manufacturing process. The strip of metal is then creased and sent on to the next phase of production, where a metal rod is slipped through the hole. It's important that the hole be punched to the specified diameter of 1.84 cm. To test punching accuracy, technicians randomly sampled 16 punched holes and measured the diameters. The sample data (in centimetres) has a mean of 1.85 and variance 0.0064. Set up null and alternate hypothesis to test if the machine is working properly (whether the holes are being punched an average of 1.84 centimetres), at an alpha level of 0.05. Assume the punched holes are normally distributed in the population. Given: [$t(0.05,15) = 2.131$]				
31.	A company produces two types of products, A and B. The company is limited by a constraint on the number of labour hours available, which is 500 hours. Product A requires 4 hours of labour per unit, while Product B requires 6 hours of labour per unit. Additionally, the company is restricted by a maximum of 80 units of product A and 60 units of product B that can be produced per day. The profit per unit of product A is ₹ 30, and the profit per unit of product B is ₹ 40. Formulate the Linear Programming Problem (LPP) to maximize the profit.	3			
	SECTION - D				
Т	his section comprises of 4 long answer (LA) type questions of 5 marks each				
32(A).	The purchase officer of a pharmaceutical company informs the production manager that during the month, following supply of three chemicals i.e., Aspirin (A), Caffeine (C) and Decongestant (D) used in the production of three types of pain-killing tablet will be 16 kg, 10 kg and 16 kg respectively. According to the specification, each strip of 10 tablets of Paingo requires 2 gm of A, 3 gm of C and 1 gm of D. The requirements for other tablets are:	5			
	X-prene $4 gm of A$ $1 gm of C$ $3 gm of D$				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	Taking suitable variables form the system of linear equations and use matrix method to find the number of strips of each type so that the raw materials are consumed entirely. OR				
32(B).	Given the following equations for two related markets A and B, find the				
(-):	equilibrium conditions for each market and the price for each by Cramer's rule:				
	$x_d(A) = 82 - 3 p_A + p_B$ $x_S(A) = -5 + 15 p_A$				
	$x_d(B) = 92 + 2 p_A - 4p_B$ $x_S(B) = -6 + 32 p_B$				
	where x_d and x_S denotes the quantity demanded and quantity supplied respectively and p_A and p_B represents the price for each in the two markets.				

*Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

Page 6 of 9

33.	A company has approfor one of its professectively. Determine optimum output, assu	ducts by	MC = 8	1 - 16x + x zing output	2 and $MR =$	$= 20x -2x^2$	5
34(A).	The annual rice prod	uction (in	million tonr	es) in a par	ticular state o	over the past	5
	five years is as follow	rs:					
	Year	2017	2018	2019	2020	2021	
	Rice Production (million tonnes)	9.5	10.0	10.5	11.2	12.0	
	Find the best fitted tr trend values that reputhe year 2025.		•		•		

OR

34(B). The following data shows the number of vehicles passing through a busy traffic intersection on a specific road in National Capital of India during the months of March to December in 2023:

Month	Number of vehicles (in thousands)
March	30
April	35
May	38
June	36
July	40
August	42
September	39
October	45
November	48
December	47

Calculate the 3-month moving average for the given data and determine the trend. Plot the graph to represent the trend values.

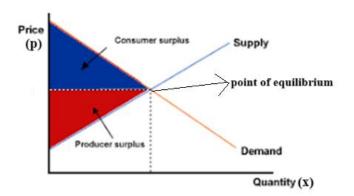
^{*}Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

vn payment of	
The loan is to	
nded monthly.	
and the total	
	wn payment of The loan is to nded monthly. and the total

SECTION - E

This section comprises of 3 case-study/passage-based questions of 4 marks each with sub parts. The first two case study questions have three sub parts (i), (ii), (iii) of marks 1, 1, 2 respectively. The third case study question has two sub parts of 2 marks each

36.	The Mathematics scores of a group of 500 students follow a normal distribution
	with a mean of 75 and a standard deviation of 8. Based on this data, answer the
	following questions:


- (i) What percentage of students scored below 75 marks?
- (ii) Find the number of students who scored more than 82 marks.
- (iii) (A) Calculate the number of students scoring between 67 and 83 marks.

OR

(iii) (B) The top 10% of students are awarded a scholarship. The Z-score for the 90th percentile is 1.28. Determine the minimum score required to qualify for the scholarship.

Use
$$P(Z < 0.875) = 0.8092, P(Z < 1) = 0.8413, P(Z < -1) = 0.1587$$

37. Analysing the Grain Market for Wheat

In the grain market for wheat, the relationship between price and quantity demanded can be modelled using a linear demand function. Suppose the following information is available from market data:

- At a price of ₹ 20 per kilogram, the quantity demanded is 400 tons.
- At a price of ₹ 25 per kilogram, the quantity demanded decreases to 200 tons.

Page **8** of **9**

5

1

1

2

^{*}Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

		Based on the above information, answer the following questions:	
	(i) (ii)	Formulate the linear demand function based on the given data. Suppose the supply function is given by $p_s = -15 + \frac{x}{20}$, determine the	1 1
	(iii)	equilibrium price and quantity. (A) Using integration, calculate the consumer surplus at the equilibrium price.	2
		OR	
		(B) Using integration, calculate the producer surplus at the equilibrium price.	
38.	petro per k	oung man rides his motorcycle at 25 km/hr, he had to spend ₹ 2 per km on ol. If he rides at a faster speed of 40 km/hr, the petrol cost increases to ₹ 5 km. He has ₹ 100 to spend on petrol and wishes to find the maximum nce he can travel within one hour.	-
	Base	ed on the given information, answer the following questions:	
	` '	Formulate the objective function and the constraints of the above Linear programming problem.	2
		Find the maximum distance the man can travel within one hour.	2

^{*}Please note that the assessment scheme of the Academic Session 2024-25 will continue in the current session i.e. 2025-26

APPLIED MATHEMATICS - Code No.241 MARKING SCHEME CLASS - XII (2025 - 26)

	SECTION – A (Solutions of MCQs of 1 Mark each)	
Q. No.	HINTS/SOLUTIONS	Marks
1.	Answer: (A)	1
	S. P of 1 kg of the mixture = ₹ 68.20, Gain = 10%	
	C. P of 1 kg of the mixture = $\{ (\frac{100}{110} \times 68.20) = \{ 62 \}$	
	By the rule of alligation, we have	
	Cost of 1 kg tea of 1 st kind Cost of 1 kg tea of 2 nd kind	
	₹ 60 ▼	
	Mean Price	
	₹ 62	
	3 4	
	∴ Required ratio = 3:2	
2.	Answer: (B)	1
	Ratio of distances covered by three of them can be expressed as A:B:C::100:90:72 When B covers 90m, C covers 72m	
	When B covers 100m, C covers $\frac{72}{90} \times 100 = 80$ m.	
	\therefore B can give C a start of $(100 - 80)$ m = 20 m	
3.	Answer: (A)	1
	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t} \implies \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{1}{t}) = -\frac{1}{t^2}\frac{dt}{dx} = -\frac{1}{t^2}(\frac{1}{2at}) = -\frac{1}{2at^3}$	
	$At t = 2, \frac{d^2y}{dx^2} = -\frac{1}{2a(2)^3} = -\frac{1}{16a}$	
4.	Answer: (B)	1
	I - b - iii; II - c - i; III - a - ii	
5.	Answer: (C)	1
	The present value of the perpetuity will increase as interest rate and present value of perpetuity are in inverse variation.	

6.	Answer: (B)	1
	$\frac{k-p}{m}$ will be largest when k is largest, p is smallest and m is smallest	
	$\operatorname{So}\frac{k-p}{m} \le \frac{21-9}{3} = \frac{12}{3} = 4$	
7.	Answer: (A)	1
	$A^2 = I$	
8.	Answer: (C)	1
	$x + 2 = \frac{1}{4}(4x + 6) + \frac{1}{2}$ so, $P = \frac{1}{4}$	
9.	Answer: (A)	1
	increases then sampling distribution must approach normal distribution	
10.	Answer: (A)	1
	Degree of freedom = $12 + 10 - 2 = 20$	
11.	Answer: (C)	1
	$ P = 1(12 - 12) - \alpha(4 - 6) + 3(4 - 6) = 2(\alpha - 3)$	
	Given $P = adj A \Rightarrow P = adj A = A ^2$	
	$\Rightarrow 2(\alpha - 3) = 4^2 = 16 \Rightarrow 2\alpha = 16 + 6 = 22$	
	$\Rightarrow \alpha = 11$	
12.	Answer: (A)	1
	$\left[\frac{d}{dx} \left[\left(\frac{dy}{dx} \right)^3 \right] = 0 \implies 3 \left(\frac{dy}{dx} \right)^2 \frac{d^2y}{dx^2} = 0$	
	Order of the differential equation = 2	
13.	Answer: (C)	1
	P.	
	$P = \frac{R}{i}$	
	$\implies 40000 = \frac{500}{i}$	
	$\Rightarrow i = 0.0125$	
	$\Rightarrow \frac{r}{4} = 0.0125$	
	$\therefore r = 0.0125 \times 4 = 0.05 = 5 \% \text{ p.a.}$	

14.	Answer: (B)	1
	Given $B = -A^{-1}BA \Rightarrow AB = -BA$	
15.	Answer: (D)	1
	Redundant constraints are the constraints that can be removed without changing or affecting the feasible region of a problem $2x + y \ge 10, x \ge 0, y \ge 0$ are the constraints that can be removed.	
16.	Answer: (C)	1
	$P(X = k) = P(X = k + 2)$ $\Rightarrow 6_{C_k} \left(\frac{1}{2}\right)^{6-k} \left(\frac{1}{2}\right)^k = 6_{C_{k+2}} \left(\frac{1}{2}\right)^{6-k-2} \left(\frac{1}{2}\right)^{k+2}$ $\Rightarrow 6_{C_k} = 6_{C_{k+2}} \Rightarrow 2k + 2 = 6 \ (\because k \neq k + 2)$ $\Rightarrow k = 2$	
17.	Answer: (D)	1
	$ 4A^2B = 4^3 A ^2 B = 4^3 \times 5^2 \times 4 = 6400$	
18.	Answer: (B)	1
18.	Answer: (B) $n = 2\frac{1}{2} \text{ years} = 30 \text{ months}$	1
18.		1
18.	$n = 2\frac{1}{2} \text{ years} = 30 \text{ months}$ $I = 20000 \times \frac{8}{100} \times \frac{5}{2} = 20000 \times \frac{1}{100} \times$	1
18.	$n = 2\frac{1}{2}$ years = 30 months $I = 20000 \times \frac{8}{100} \times \frac{5}{2} = 4000$	1
18.	$n = 2\frac{1}{2} \text{ years} = 30 \text{ months}$ $I = 20000 \times \frac{8}{100} \times \frac{5}{2} = 20000 \times \frac{1}{100} \times$	1
	$n = 2\frac{1}{2}$ years = 30 months $I = 20000 \times \frac{8}{100} \times \frac{5}{2} = 24000$ $EMI = \frac{P+I}{n}$ $= 20000 \times \frac{8}{100} \times \frac{5}{2} = 24000$ Answer: (B)	
	$n = 2\frac{1}{2}$ years = 30 months $I = \frac{1}{2} = \frac{1}{2}$	
	$n = 2\frac{1}{2} \text{ years} = 30 \text{ months}$ $I = 20000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $EMI = \frac{P+I}{n}$ $= 20000+4000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $= 20000+4000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $= 20000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $= 20000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $= 20000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $= 30000 \times \frac{9}{100} \times \frac$	
	$n = 2\frac{1}{2} \text{ years} = 30 \text{ months}$ $I = \frac{20000}{20000} \times \frac{8}{100} \times \frac{5}{2} = \frac{4000}{4000}$ $EMI = \frac{P+I}{n}$ $= \frac{200000+4000}{30} = \frac{800}{30}$ Answer: (B) $adj (adj A) = adj \left[adj \binom{a}{c} \frac{b}{d} \right] = adj \binom{d}{-c} \frac{-b}{a} = \binom{a}{c} \frac{b}{d} = A$ So, assertion is true. $ adj A = da - b(-c) = ad - bc = A $ Reason statement is true However, Reason statement is not the correct explanation of Assertion.	
	$n = 2\frac{1}{2} \text{ years} = 30 \text{ months}$ $I = 20000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $EMI = \frac{P+I}{n}$ $= 20000 + 4000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $= 20000 + 4000 \times \frac{8}{100} \times \frac{5}{2} = 4000$ $= 20000 \times \frac{1}{100} \times $	
	$n=2\frac{1}{2}$ years = 30 months $I=$ ₹ 20000 × $\frac{8}{100}$ × $\frac{5}{2}$ = ₹ 4000 EMI = $\frac{P+I}{n}$ = ₹ $\left(\frac{20000+4000}{30}\right)$ = ₹ 800 Answer: (B) $adj~(adj~A)=adj~\left[adj\left(\frac{a}{c} \begin{array}{c} b\\c \end{array}\right)\right]=adj\left(\frac{d}{-c} \begin{array}{c} -b\\c \end{array}\right)=\left(\frac{a}{c} \begin{array}{c} b\\c \end{array}\right)=A$ So, assertion is true. adj~A =da-b(-c)=ad-bc= A Reason statement is true However, Reason statement is not the correct explanation of Assertion. ∴ Both Assertion (A) and Reason (R) are true and (R) is not the correct explanation of Assertion (A).	
19.	$n=2\frac{1}{2}$ years = 30 months $I=$ ₹ 20000 × $\frac{8}{100}$ × $\frac{5}{2}$ = ₹ 4000 $EMI=\frac{P+I}{n}$ = ₹ $\left(\frac{20000+4000}{30}\right)$ = ₹ 800 $Answer:$ (B) $adj (adj A) = adj \left[adj \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right] = adj \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = A$ So, assertion is true. $ adj A = da - b(-c) = ad - bc = A $ Reason statement is true $However$, Reason statement is not the correct explanation of Assertion. \therefore Both Assertion (A) and Reason (R) are true and (R) is not the correct explanation of Assertion (A).	1
19.	$n=2\frac{1}{2}$ years = 30 months $I=$ ₹ 20000 × $\frac{8}{100}$ × $\frac{5}{2}$ = ₹ 4000 EMI = $\frac{P+I}{n}$ = ₹ $\left(\frac{20000+4000}{30}\right)$ = ₹ 800 Answer: (B) $adj~(adj~A)=adj~\left[adj\left(\frac{a}{c} \begin{array}{c} b\\c \end{array}\right)\right]=adj\left(\frac{d}{-c} \begin{array}{c} -b\\c \end{array}\right)=\left(\frac{a}{c} \begin{array}{c} b\\c \end{array}\right)=A$ So, assertion is true. adj~A =da-b(-c)=ad-bc= A Reason statement is true However, Reason statement is not the correct explanation of Assertion. ∴ Both Assertion (A) and Reason (R) are true and (R) is not the correct explanation of Assertion (A).	1

	Section –B	
[Thi	s section comprises of solution of very short answer type questions (VSA) of 2 marl	ks each]
21 (A)	Last digit can be obtained by division with 10. required answer = $(2^{100} + 100!) mod 10$ $2^5 mod 10 = 32 mod 10 \equiv 2 mod 10 \Rightarrow 2^5 \equiv 2 mod 10 \Rightarrow (2^5)^5 \equiv 2^5 mod 10$ $\equiv 2 mod 10$ $\Rightarrow (2^{25})^4 \equiv 2^4 mod 10 \equiv 16 mod 10 \equiv 6$ Mod $10 = 6$ Also $100! = 100 \times 99!$ which is divisible by 10 So, $100! \ mod \ 10 = 0 \Rightarrow (2^{100} + 100!) mod \ 10 \equiv (6 + 0) mod \ 10 = 6$	1
	OR	
21 (B)	Obviously $\sqrt{6} + \sqrt{5} > \sqrt{3} + \sqrt{2} \Rightarrow \frac{(\sqrt{6} + \sqrt{5})(\sqrt{6} - \sqrt{5})}{(\sqrt{6} - \sqrt{5})} > \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} - \sqrt{2})}$ $\Rightarrow \frac{6 - 5}{(\sqrt{6} - \sqrt{5})} > \frac{3 - 2}{(\sqrt{3} - \sqrt{2})} \Rightarrow \frac{1}{(\sqrt{6} - \sqrt{5})} > \frac{1}{(\sqrt{3} - \sqrt{2})}$ $\Rightarrow \sqrt{6} - \sqrt{5} < \sqrt{3} - \sqrt{2} \Rightarrow \sqrt{5} + \sqrt{3} > \sqrt{6} + \sqrt{2}$	1/ ₂ 1 1/ ₂
22.	P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 1	1/
	$\Rightarrow 1 \times a + 2 \times a + 3 \times a + b = 1$ \Rightarrow 6 a + b = 1 \dots (i)	1/2
	$E(X) = 1 \times a + 2 \times 2a + 3 \times 3a + 4 \times b = 2.8$	1/2
	\Rightarrow 14 a + 4 b = 2.8 (ii) Solving (i) and (ii), we get a = 0.12 and b = 0.28	1/2+1/2
23.	$CAGR = \left[\left(\frac{\mathit{EV}}{\mathit{SV}} \right)^{\frac{1}{n}} - 1 \right] \times 100$	1
	$\Rightarrow 5 = \left[\left(\frac{125000}{75000} \right)^{\frac{1}{n}} - 1 \right] \times 100$	•
	$\Rightarrow 1.05 = \left(\frac{5}{3}\right)^{\frac{1}{n}}$ $\Rightarrow \log(1.05) = \frac{1}{n}\log(1.67)$	1/2
	$\Rightarrow n = \frac{0.223}{0.021} = 10.6 \approx 11$	1/2
	∴ required number of years = 11 years	
24	Here, $\lambda = 2$	1/2
(A)	Required probability = $P(X = 3/X \ge 1) = \frac{P(X=3 \cap X \ge 1)}{P(X \ge 1)} = \frac{P(X=3)}{P(X \ge 1)}$ $P(X = 3) = \frac{2^3 e^{-2}}{3!} = 0.19$	1/2
	$P(X = 3) = \frac{1}{3!} = 0.19$ $P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{2^0 e^{-2}}{0!} = 1 - 0.14 = 0.86$	1/2
	$P(X = 3/X \ge 1) = \frac{0.19}{0.86} = 0.22$	1/2
	OR	

24	$\lambda = \frac{2}{1000} \times 5000 = 10$	1/2
(B)	P(more than 1 failure) = P(X > 1) = 1 - [P(X = 0) + P(X = 1)]	1/
	$=1-\left[\frac{10^{0}e^{-10}}{0!}+\frac{10^{1}e^{-10}}{1!}\right]$	1/2
	$=1-e^{-10}(1+10)$	1/2
	$= 1 - 4.54 \times 10^{-5} \times 11$	
25	= 1 - 0.0004994 = 0.9995 approx.	1/2
25.	$D = \frac{C - S}{n}$	
	$\Rightarrow 2500 = \frac{25000 - 12500}{n}$	1
	$\Rightarrow n = \frac{12500}{2500} = 5$	1/2
	So, after 5 years the value of the machine will be half of its initial value.	1/2
	Value of machine after 6 years = 25000 − 2500 × 6 = ₹ 10,000	/2
	Section -C	
	This section comprises of solution short answer type questions (SA) of 3 marks	each]
26.	Let speed upstream be x km/hr and speed downstream be y km/hr	
	Since distance upstream and downstream is same	
	$3 \cdot 8 \cdot 8 \cdot 4 = 4y \Rightarrow \frac{44}{5} \cdot x = 4y \Rightarrow \frac{y}{x} = \frac{11}{5}$ (i)	1
	Now, speed of boat : speed of stream = $\frac{x+y}{2}$: $\frac{y-x}{2}$	
	(i) $\Rightarrow \frac{y+x}{y-x} = \frac{11+5}{11-5} \Rightarrow \frac{\frac{y+x}{2}}{\frac{y-x}{2}} = \frac{8}{3}$	1
	2	1
	∴ speed of boat : speed of stream = 8:3	-
27	Given $y = px^3 + qx^2 \Rightarrow \frac{dy}{dx} = 3px^2 + 2qx$ (i)	
(A)	Since $x = 1$ is a critical point $3p(1)^2 + 2q(1) = 0 \Rightarrow 3p + 2q = 0$ (ii)	1
	Also, curve passes through $(1, -1)$ so $-1 = p + q$ (iii)	•
	Solving (ii) and (iii) we get, $p=2$ and $q=-3$	1/2
	Using this in (i) we get $\frac{dy}{dx} = 6x^2 - 6x$	1
	Now for other critical point, $\frac{dy}{dx} = 0 \Rightarrow 6x^2 - 6x = 0 \Rightarrow 6x(x-1) = 0$	
	$\Rightarrow x = 0 \text{ or } 1$	
	Thus, the other critical point is (0,0)	1/2
	OR	
27	$AR(x) = \frac{R(x)}{x} = 15 + \frac{x}{3} - \frac{x^3}{36}$, Now $\frac{d}{dx}AR(x) = 0 \implies 0 + \frac{1}{3} - \frac{3x^2}{36} = 0$	1/2
(B)	$\Rightarrow x^2 = 4 \Rightarrow x = 2 \text{ (as } x \text{ is non negative)}$	1/2
	$\Rightarrow x = 2$ is the critical point of $AR(x)$.	1/2
	Now $\frac{d^2[AR(x)]}{dx^2} = 0 - \frac{6(2)}{36} < 0$ hence $AR(x)$ is maximum at $x = 2$	1/2
	$AR(2) = 15 + \frac{2}{3} - \frac{8}{36} = 15 + \frac{4}{9}$	1/2
	3 30	1/2
	Now, $MR(x) = 15 + \frac{2x}{3} - \frac{4x^3}{36} \implies MR(2) = 15 + \frac{4}{3} - \frac{8}{9} = 15 + \frac{4}{9}$	72
	$\therefore AR(2) = MR(2)$	

28	C = Face value or maturity value = ₹ 56,000,	1/2
(A)	$n = \text{number of periodic interest payments} = 4 \times 6 = 24$	
	Yield rate $(i) = \frac{9}{400} = 0.0225$	
	$R = \text{Coupon Payment} = \frac{7 \times 56000}{400} = ₹980$	1/2
	Purchase price of the bond $(V) = R\left[\frac{1-(1+i)^{-n}}{i}\right] + C(1+i)^{-n}$	1
	$= 980 \left[\frac{1 - (1 + 0.0225)^{-24}}{0.0225} \right] + 56000(1 + 0.0225)^{-24}$	•
	$=980\left[\frac{1-0.58}{0.0225}\right]+56000\times0.58$	1/2
	= ₹ (18293.33 + 32480) = ₹ 50773.33	1/2
	OR	
28	Cost of new machine = ₹ $(50,000 + 30\% \times 50,000)$ = ₹ 65,000	1/2
(B)	$A = \text{Amount required in sinking fund} = ₹ (65,0000 - 6,000) = ₹ 59,000$ $R\left[\frac{(1+i)^{n}-1}{i}\right] = A$	1/2
	$R\left[\frac{(1.06)^8 - 1}{0.06}\right] = 59000$	1
	$R\left[\frac{1.6-1}{0.06}\right] = 59000$	
	$\Rightarrow R = \frac{59000 \times 0.06}{0.6} = \text$	
	So, the required amount to be retained = ₹ 5900	1
29.	Let t minutes be the total time taken to fill the tank	
	So according to the question,	
	pipe A is open for (t – 10) minutes, pipe C is open for (t – 10) minutes, pipe B is	
	open for 10 minutes.	1
	Using work done per minute, we get	
	$\left \frac{t-10}{30} + \frac{10}{60} + \frac{t-10}{120} = 1 \right \Rightarrow \frac{5t-30}{120} = 1$	
	$\Rightarrow 5t = 150 \Rightarrow t = 30 \text{ minutes.}$	1+1/2
	∴ It will take 30 minutes to fill the tank.	
30.	H_0 : $\mu=1.84$ cm (machine is working properly) H_1 : $\mu\neq 1.84$ cm (machine is not working properly)	1/2
	For sample: $\bar{x}=1.85$ cm and $s=\sqrt{0.0064}=0.08$ cm At $\alpha=0.05$ and df = 15	1/2
	$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{1.85 - 1.84}{\frac{0.08}{\sqrt{16}}} = \frac{0.01}{0.08} \times 4 = 0.5$	1
	$ t_{cal} =0.5 < t_{critical}=2.131$ at $\alpha=0.05$ and df = 15	1/2
	∴ null hypothesis is accepted, there is no significant difference between the sample mean and the population mean, hence machine is working properly.	1/2

31.	Let <i>x</i> be the number of units of Product A produced per day
	and y be the number of units of Product B produced per day
	The objective is to maximize the profit , which is given by:

1/2

$$Z = 30 x + 40 y$$

subject to the following constraints:

1

$$4x + 6y \le 500$$
$$x \le 80$$
$$y \le 60$$

 $x \ge 0, y \ge 0$

11/2

Section -D

[This section comprises of solution of long answer type questions (LA) of 5 marks each]

32 Let the production manager produces x number of strips (of 10 tablets) of (A) Paingo, y number of strips (of 10 tables) X -prene and z number of strips (of 10 tablets) Relaxo.

1/2

We have the following information from the question

From the table we have

$$2x + 4y + z = 16000$$
 (1)

$$3x + y + 2z = 10000$$
 (2)

$$x + 3y + 3z = 16000$$
 (3)

The matrices representation of above system of equations is

	Paingo	X-prene	Relaxo	Availability
A	2x	4y	z	16000
C	3x	y	2z	10000
D	x	3y	3z	16000

$$\begin{bmatrix} 2 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 16000 \\ 10000 \\ 16000 \end{bmatrix}$$

1

or
$$A$$
.

Since,
$$|A| = 2(3-6) - 4(9-2) + 1(9-1)$$

1/2

$$= -6 - 28 + 8 = -26 \neq 0,$$

Thus A^{-1} exists, so that the unique solution of AX = B is $X = A^{-1}B$.

Here,
$$\operatorname{adj} A = \begin{bmatrix} -3 & -9 & 7 \\ -7 & 5 & -1 \\ 8 & -2 & -10 \end{bmatrix}$$

1

$$A^{-1} = \frac{1}{|A|} (adj A) = \frac{1}{-26} \begin{bmatrix} -3 & -9 & 7 \\ -7 & 5 & -1 \\ 9 & -2 & -10 \end{bmatrix}$$

1/2

$$A^{-1} = \frac{1}{|A|}(adj A) = \frac{1}{-26} \begin{bmatrix} -3 & -9 & 7 \\ -7 & 5 & -1 \\ 8 & -2 & -10 \end{bmatrix}$$

$$Now, X = A^{-1}B = \frac{1}{-26} \begin{bmatrix} -3 & -9 & 7 \\ -7 & 5 & -1 \\ 8 & -2 & -10 \end{bmatrix} \begin{bmatrix} 16000 \\ 10000 \\ 16000 \end{bmatrix} = \begin{bmatrix} 1000 \\ 3000 \\ 2000 \end{bmatrix}$$

Hence, number of strips of Paingo, X -prene and Relaxo are 1000, 3000 and 2000 respectively

11/2

OR

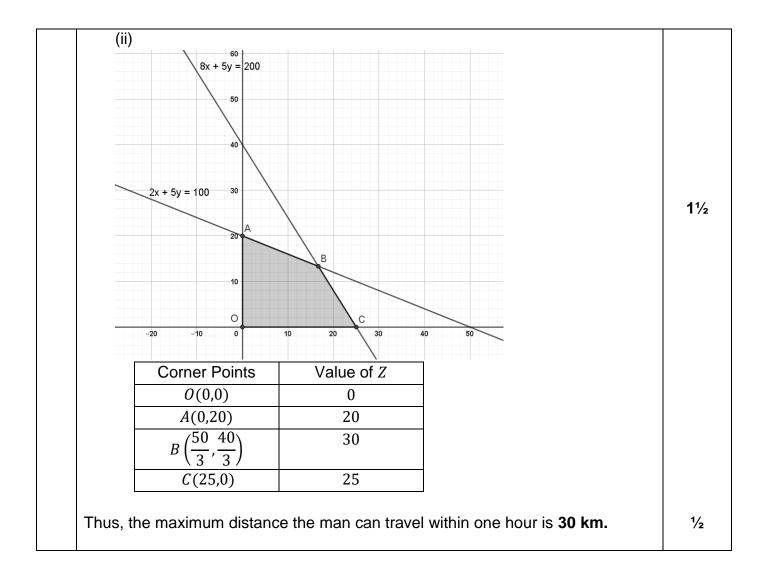
(B)	Under equilibrium condition,									
_,,	For market	Α								
	$82 - 3p_A + p_B = -5 + 15p_A \implies 18p_A - p_B = 87$ For market B									
	For market B $92 + 2p_A - 4p_B = -6 + 32p_B \implies 2p_A - 36p_B = -98$									
	Now,									
	$ D = -646$, $ D_A = -3230$, $ D_B = -1938$									
	$p_A = \frac{ D_A }{ D } = \frac{-3230}{-646} = 5$									
	121 010									
	$p_B = \frac{ D_B }{ D } =$	$\frac{1}{-646} = 3$					1/2			
33.	D. C. D.	venue – Cost	$\rightarrow dP - d$	R dC			1			
					2		-			
	ux	MR - MC =	ux				1			
	For maximu	um profit $\frac{dP}{dx} =$	$= 0 \implies -8$	31 + 36x	$-3x^2 = 0 =$	$\Rightarrow x = 3 \text{ or } 9$	1/			
	Now $\frac{d^2P}{dx^2}$ =	36 - 6x = 3	36 - 54 <	0, at $x =$	9, so <i>P</i> is m	aximum at $x = 9$.	1/2			
	ux	-81 + 36x -								
	a.r.	$31x + 18x^2 - x$		J (01		- -	1			
		$0, P = 0 \implies$					47			
	$\Rightarrow P = -8$	$31x + 18x^2 - x$	x^3 and at x	= 9, P =	- 729 + 2(729) - 729 = 0	1/2			
	∴ Total prof	fit at profit max	⇒ $P = -81x + 18x^2 - x^3$ and at $x = 9, P = -729 + 2(729) - 729 = 0$ ∴ Total profit at profit maximizing output is 0.							
	T-1 - 0040									
24	Taka 2010	as the middle	voor io 1	_ 2010						
34 (A)	Take 2019	as the middle	year, i.e., A	= 2019						
34 (A)	Take 2019	as the middle	year, i.e., $A = X_i - A$		XY	Trend				
		·	_		XY	Trend Values				
	Year	Rice Production (million	_		XY		3			
	Year (x_i)	Rice Production (million tonnes) (Y)	$X = x_i - A$	<i>X</i> ²		Values $Y = a + bX$	marks			
	Year (x _i) 2017	Rice Production (million tonnes) (Y)	$X = x_i - A$ -2	<i>X</i> ² 4	-19.0	Values $Y = a + bX$ 9.40	marks for			
	Year (x _i) 2017 2018	Rice Production (million tonnes) (Y) 9.5 10.0	$X = x_i - A$ -2 -1	<i>X</i> ² 4 1	-19.0 -10.0	Values $Y = a + bX$ 9.40 10.02	marks for correc			
	Year (x _i) 2017 2018 2019	Rice Production (million tonnes) (Y) 9.5 10.0 10.5	$X = x_i - A$ -2 -1 0	<i>X</i> ² 4 1 0	-19.0 -10.0 0.0	Values $Y = a + bX$ 9.40 10.02 10.64	marks for			
	Year (x _i) 2017 2018 2019 2020	Rice Production (million tonnes) (Y) 9.5 10.0 10.5 11.2	$X = x_i - A$ -2 -1	<i>X</i> ² 4 1	-19.0 -10.0 0.0 11.2	Values $Y = a + bX$ 9.40 10.02 10.64 11.26	marks for correc			
	Year (x _i) 2017 2018 2019	Rice Production (million tonnes) (Y) 9.5 10.0 10.5	$X = x_i - A$ -2 -1 0 1	X ² 4 1 0 1	-19.0 -10.0 0.0	Values $Y = a + bX$ 9.40 10.02 10.64	marks for correc			
	Year (x _i) 2017 2018 2019 2020 2021 Total	Rice Production (million tonnes) (Y) 9.5 10.0 10.5 11.2 12.0 53.2	$X = x_i - A$ -2 -1 0 1 2	X ² 4 1 0 1 4	-19.0 -10.0 0.0 11.2 24.0	Values $Y = a + bX$ 9.40 10.02 10.64 11.26	marks for correc t table			
	Year (x _i) 2017 2018 2019 2020 2021 Total	Rice Production (million tonnes) (Y) 9.5 10.0 10.5 11.2	$X = x_i - A$ -2 -1 0 1 2	X ² 4 1 0 1 4	-19.0 -10.0 0.0 11.2 24.0	Values $Y = a + bX$ 9.40 10.02 10.64 11.26	marks for correc			
	Year (x _i) 2017 2018 2019 2020 2021 Total	Rice Production (million tonnes) (Y) 9.5 10.0 10.5 11.2 12.0 53.2	$X = x_i - A$ -2 -1 0 1 2	X ² 4 1 0 1 4	-19.0 -10.0 0.0 11.2 24.0	Values $Y = a + bX$ 9.40 10.02 10.64 11.26	marks for correc t table			
	Year (x_i) 2017 2018 2019 2020 2021 $Total$ $a = \frac{\sum Y}{n} = \frac{5}{2}$ $b = \frac{\sum XY}{\sum X^2} = \frac{5}{2}$	Rice Production (million tonnes) (Y) 9.5 10.0 10.5 11.2 12.0 53.2 $\frac{63.2}{5} = 10.64$ $\frac{6.2}{10} = 0.62$	$X = x_i - A$ -2 -1 0 1 2 0	X ² 4 1 0 1 4 10	-19.0 -10.0 0.0 11.2 24.0	Values $Y = a + bX$ 9.40 10.02 10.64 11.26	marks for correc t table			
	Year (x_i) 2017 2018 2019 2020 2021 $Total$ $a = \frac{\sum Y}{n} = \frac{5}{2}$ $b = \frac{\sum XY}{\sum X^2} = \frac{5}{2}$ $\therefore \text{The trend}$	Rice Production (million tonnes) (Y) 9.5 10.0 10.5 11.2 12.0 53.2	$X = x_i - A$ -2 -1 0 1 2 0	X ² 4 1 0 1 4 10	-19.0 -10.0 0.0 11.2 24.0 6.2	Values $Y = a + bX$ 9.40 10.02 10.64 11.26 11.88	marks for correc t table			
	Year (x_i) 2017 2018 2019 2020 2021 $Total$ $a = \frac{\sum Y}{n} = \frac{5}{2}$ $b = \frac{\sum XY}{\sum X^2} = \frac{5}{2}$ $\therefore \text{The trend}$	Rice Production (million tonnes) (Y) 9.5 10.0 10.5 11.2 12.0 53.2 $\frac{33.2}{5} = 10.64$ $\frac{6.2}{10} = 0.62$ d equation is y	$X = x_i - A$ -2 -1 0 1 2 0	X ² 4 1 0 1 4 10	-19.0 -10.0 0.0 11.2 24.0 6.2	Values $Y = a + bX$ 9.40 10.02 10.64 11.26 11.88	marks for correc t table			

Month	Number of vehicles (Thousands)	3-Month Moving Total	3-Month Moving Average		
March	30	-	-		
April	35	103	34.33	3	
May	38	109	36.33	marks	
June	36	114	38.00	for	
July	40	118	39.33	correc	
August	42	121	40.33	t table	
September	39	126	42.00		
October	45	132	44.00		
November	48	140	46.67		
December	47	-	-		
$i = \frac{10}{12 \times 100} = 0.0083$ $n = 5 \times 12 = 60$				1/ ₂ 1/ ₂	
$EMI = \frac{P \times i \times (1+i)^n}{(1+i)^n - 1}$ $= \frac{800000 \times 0.0083 \times (1+0.0083)^{60}}{(1+0.0083)^{60} - 1}$					
$=\frac{800000\times 0}{(1)}$	$+0.0083\times(1+0.0083)^{-1}$			1	
(1	$\frac{0.0083 \times (1+0.0083)^{60}}{+0.0083)^{60}-1}$ $\frac{0.0083 \times 1.64}{4-1} = ₹ 17,015$			11½	
(1	$+0.0083)^{60} - 1$ $\frac{.0083 \times 1.64}{4 - 1} = ₹ 17,015$	0.00			

Section -E

[This section comprises solution of 3 case- study/passage-based questions of 4 marks each. Solutions of the first two case study questions have three sub parts (i),(ii),(iii) of 1,1 and 2 marks respectively. Solution of the third case study question has two sub parts of 2 marks each.]

36. Here,
$$\mu = 75$$
, $\sigma = 8$, $n = 500$


(i) For $X = 75$, $Z = \frac{X - \mu}{\sigma} = \frac{75 - 75}{8} = 0$
 $P(X < 75) = P(Z < 0) = 0.5$
 50% of students scored below 75 marks.

(ii) For $X = 82$, $Z = \frac{82 - 75}{8} = 0.875$
 $P((X > 82) = P(Z > 0.875) = 1 - P(Z < 0.875) = 1 - 0.8092 = 0.1908$
 \therefore Required number of students = $0.1908 \times 500 = 95.4 \approx 95$

	(iii) (A) For $X = 67$, $Z = \frac{67 - 75}{9} = -1$	1/2
	For $X = 83$, $Z = \frac{83-75}{8} = 1$	
	P(67 < X < 83) = P(-1 < Z < 1)	
	= P(Z < 1) - P(Z < -1)	1
	= 0.8413 - 0.1587 = 0.6826	1/2
	∴ Required number of students = $0.6826 \times 500 = 341.3 \approx 341$	
	OR	
	(B) Top 10% corresponds to the 90th percentile.	
	$\Rightarrow Z = \frac{X-\mu}{\sigma} = 1.28$	
	$\Rightarrow \frac{X-75}{8} = 1.28$	1
	$\Rightarrow X = 85.24 \approx 85$	_
	∴ The minimum score required to qualify for the scholarship is 85 marks.	1
37.	(i) $p_d = a + bx$	1/
	\Rightarrow 20 = a + 400 b (i) and 25 = a + 200 b (ii)	1/2
	Solving (i) and (ii), we get $a = 30, b = -\frac{1}{40}$	
	$p_d = 30 - \frac{1}{40}x$	1/2
	40	
	(ii) For equilibrium, $p_d = p_s$	
	$\Rightarrow 30 - \frac{1}{40}x = -15 + \frac{x}{20}$	1/2
	$\therefore x = 600$ Equilibrium price = 20 \(^1 \times 600 = \frac{7}{2} \)	1/2
	Equilibrium price = $30 - \frac{1}{40} \times 600 = ₹15$	1
	(iii) (A) Consumer surplus = $\int_0^{600} \left(30 - \frac{1}{40} x \right) dx - 600 \times 15$	
	$= \left[30 x - \frac{1}{80} x^2\right]_0^{600} - 9000$	
	= 13500 - 90000 = 4500	1
	∴ Consumer surplus = ₹ 4500	-
	OR	
	(B) Producer surplus = $600 \times 15 - \int_0^{600} \left(-15 + \frac{x}{20}\right) dx$	1
	$= 9000 - \left[-15 x + \frac{1}{40} x^2 \right]_0^{600}$	
		1
	= 9000 - (-9000 + 9000) = 9000 ∴ Producer surplus = ₹ 9000	•
38.	·	
30.	(i) Let the distance the man travels at 25 km/hr be denoted by x and the distance he travels at 40 km/hr be denoted by y	1/2
	Linear programming problem is	/2
	Objective function is to Maximize $Z = x + y$	1/2
	Subject to the constraints:	
	$\frac{x}{25} + \frac{y}{40} \le 1$ i.e., $8x + 5y \le 200$	
	$2x + 5y \le 100$	1
	$x \ge 0, y \ge 0$	

